Time Dependence on Transverse Amplitude in Linac

J. Scott Berg
Brookhaven National Laboratory
NFMCC Friday Meeting
21 July 2006

Chromaticity and Time of Flight Dependence

- Time of flight in general depends on transverse amplitude
- Dependence is directly proportional to chromaticity
- Chromaticity is uncorrected in linac
- Time of flight deviation is approximately

$$-\frac{2\pi}{\Delta E}\ln\left(\frac{p_f}{p_i}\right)\boldsymbol{\xi}\cdot\boldsymbol{J}_n,$$

- Initial and final momenta p_i and p_f , chromaticity ξ and energy gain ΔE per cell, normalized transverse action ${\bf J}_n$ in eV-s
- Synchrotron oscillations alleviate the problem somewhat
 - Don't occur in higher energy part of linac
- About 30° of phase slip in 500–1500 MeV linac

Nuon Collider

What to do

- Need to do tracking in linac to ascertain the effect
 - Tracking code needs to include everything: avoid approximations
- Could we add occasional chicanes with positive chromaticity?
 - Dynamic aperture or beam blowup
- Shorten linac, go into small RLA sooner
- RLA may see this issue also
 - Alleviated by synchrotron oscillations somewhat
 - * Turns into energy shift
 - Can we over-correct chromaticity in arcs?
 - ⋆ Geometric aberrations

